Searching for Extra Dimensions at the Tevatron

(For the CDF & DØ Collaborations)

SSI '04

August 9, 2004

Out-Sketch

Theory/Phenomenology Tabletop Experiments

See Tom Rizzo's Talk:

- Models
- Cosmology Constraints
- Future

See Sylvia Smullin's Talk:

Gravity at short distances

Accelerator Searches

This Talk:

- Brief Theory Recap
- Tevatron & Detectors
- Searches:
 - o ADD Model
 - o TeV⁻¹ Scenario
 - o RS Model
 - o Universal ED
 - o Use-Them-n-Lose-Them ED (little Higgs models)
- Conclusions

Big Why? (Or Math Meets Physics)

- Math physics: some dimensionalities are quite special
- Example: Laplace equation in two dimensions has logarithmic solution; for any higher number of dimensions it obeys power law instead
- Some of these peculiarities exhibit themselves in condensed matter physics, e.g. diffusion equation solutions allow for long-range correlations in 2D-systems (cf. flocking)
- Modern view in topology: one dimension is trivial; two and three spatial dimensions are special (properties are defined by the topology); any higher number is not
- Do we live in a special space, or only believe that we are special?

Difference Between the Models

ADD Model:

- *Eliminates" the hierarchy problem by stating that physics ends at a TeV scale
- Only gravity lives in the "bulk" space
- Size of ED's (n=2-7) between ~100 μm and ~1 fm
- Doesn't explain how to make ED large

TeV-1 Scenario:

- Lowers GUT scale by changing the running of the couplings
- Only gauge bosons
 (g/γ/W/Z) propagate in
 a single ED; gravity is
 not in the picture
- Size of the ED ~1 TeV⁻¹ or ~10⁻¹⁰ m

RS Model:

- A rigorous solution to the hierarchy problem via localization of gravity
- Gravitons (and possibly other particles)
 propagate in a single ED,
 w/ special metric
- Size of this ED as small as ~1/M_{Pl} or ~10⁻³⁵ m

Kaluza-Klein Spectrum

ADD Model:

- Winding modes with energy spacing $\sim 1/r$, i.e. 1 meV - 100 MeV
- Can't resolve these modes – they appear as continuous spectrum

TeV-1 Scenario:

- Winding modes with nearly equal energy spacing ~1/r, i.e. ~TeV
- Can excite individual modes at colliders or look for indirect effects

$$M_{i} = \sqrt{M_{0}^{2} + i^{2}/r^{2}}$$

$$M_{i}$$

$$M_{0}$$

RS Model:

- "Particle in a box" with a special metric
- Energy eigenvalues are given by zeroes of Bessel function J₁
- Light modes might be accessible at colliders

$$\begin{split} M_i &= M_0 \, x_i / x_0 \approx M_0, 1.83 M_0, \\ 2.66 M_0, 3.48 M_0, 4.30 M_0, \dots \\ & \text{E} \, \uparrow \quad & \text{I} \end{split}$$

Collider Signatures for Large Extra Dimensions

- Kaluza-Klein gravitons couple to the energy-momentum tensor, and therefore contribute to most of the SM processes
- **♣** For Feynman rules for G_{KK} see:
 - Han, Lykken, Zhang, PR **D59**, 105006 (1999)
 - Giudice, Rattazzi, Wells, Nucl. Phys. **B544**, 3 (1999)
- Since graviton can propagate in the bulk, energy and momentum are not conserved in the G_{KK} emission from the point of view of our 3+1 space-time
- Depending on whether the G_{KK} leaves our world or remains virtual, the collider signatures include single photons/Z/jets with missing E_T or fermion/vector boson pair production
- Graviton emission: direct sensitivity to the fundamental Planck scale M_D
- Virtual effects: sensitive to the ultraviolet cutoff M_S, expected to be ~M_D (and likely < M_D)
- The two processes are complementary

Real Graviton Emission

Monojets at hadron colliders

Single VB at hadron or e⁺e⁻ colliders

Virtual Graviton Emission

Fermion or VB pairs at hadron or e⁺e⁻ colliders

Run II Vital Statistics

- Significant upgrade of the detectors and the accelerator complex:
 - New main injector and antiproton recycler
 - Higher c.o.m. energy: (1.8 TeV → 1.96 TeV)
 - Shorter bunch crossing: $(3.5 \mu s \rightarrow 396 ns)$
 - More proton and antiproton bunches: (6 x 6 → 36 x 36)
 - Projected integrated luminosity per experiment:
 - ♣ ~2 fb⁻¹ (2006)
 - **♣** ~8 fb⁻¹ (2009)
- Slow start but we caught up!
- Highest luminosity so far: 1.03 x 10³² cm⁻²s⁻¹
- Nearly 0.5 fb⁻¹ of data on tape per experiment to date
- ♣ Data taking efficiency: 85-90%

Tevatron Performance

CDF and DØ

- New:
 - ❖ silicon detector, drift chamber
 - ❖ TOF PID system
- Upgraded:
 - calorimeter, muon system
 - DAQ/trigger, displaced-vertex trigger

- New:
 - 2T superconducting solenoid
 - ❖ silicon detector, fiber tracker
- Upgraded:
 - ❖ FE electronics, muon system
 - DAQ/trigger, displaced-vertex trigger

CDF & DØ Performance

1 billion events recorded as of August 2!

- ❖ Both experiments are ≈85% efficient over the last year
- ❖ Most of the analyses shown in this talk are based on ~200 pb⁻¹, which corresponds to 2002-2003 data

Search for Monojets

- **♣** Challenge: large instrumental background from ME_T mismeasurement and cosmics
- Irreducible physics background from Z(vv) + jet(s): forced to use high jet P_T , ME_T cuts
- **♣** Pioneered in Run I by DØ [PRL **90**, 251802 (2003)]: $M_D > 0.63 0.89$ TeV (n=6-2)
- **Recently superseded by CDF** [PRL **92**, 121802 (2004)]: $M_D > 0.71 1.00$ TeV (n=6-2)
- \blacksquare CDF also pioneered similar search in γ +ME_T, albeit less sensitive [PRL **89**, 281801 (2002)]
- New Run II analysis from DØ based on 85 pb⁻¹ of data collected with special trigger
 - Major systematics from jet energy scale to be reduced soon
 - Sensitivity already exceeds that for DØ in Run I, but still below the CDF's Run I result
 - ♣ Impressive sensitivity already achieved with less data due to superior detector and higher energy

Virtual Graviton Effects

♣ In the case of pair production via virtual graviton, gravity effects interfere with the SM (e.g., l+l⁻ at hadron colliders):

♣ Therefore, production cross section has three terms: SM, interference, and direct gravity effects:

$$\frac{d^2\sigma}{d\cos\theta^*dM} = \frac{d^2\sigma_{SM}}{d\cos\theta^*dM} + \frac{a(n)}{M_S^4} f_1(\cos\theta^*, M) + \frac{a(n)^2}{M_S^8} f_2(\cos\theta^*, M)$$

- ★ The sum in KK states is divergent in the effective theory, so in order to calculate the cross sections, an explicit cut-off is required
- ♣ An expected value of the cut-off $M_S \approx M_D$, as this is the scale at which the effective theory breaks down, and the string theory needs to be used to calculate production
- There are three major conventions on how to write the effective Lagrangian:
 - Hewett, Phys. Rev. Lett. 82, 4765 (1999)
 - Giudice, Rattazzi, Wells, Nucl. Phys. B544, 3 (1999); revised version, hepph/9811291
 - Han, Lykken, Zhang, Phys. Rev. **D59**, 105006 (1999); revised version, hep-ph/9811350
- ♣ Fortunately all three conventions turned out to be equivalent and only the definitions of M_S are different

Hewett, GRW, and HLZ Formalisms

- Hewett: neither sign of the interference nor the dependence on the number of extra dimensions is known; therefore the interference term is $\sim \lambda/M_S^4$ (Hewett), where λ is of order 1; numerically uses $\lambda = \pm 1$
- GRW: sign of the interference is fixed, but the dependence on the number of extra dimensions is unknown; therefore the interference term is $\sim 1/\Lambda_T^4$ (where Λ_T is their notation for M_S)
- **HLZ**: not only the sign of interference is fixed, but the n-dependence can be calculated in the effective theory; thus the interference term is ∼ 𝒯/M_S⁴(HLZ), where 𝒯 reflects the dependence on the number of extra dimensions:

$$F = \begin{cases} \log\left(\frac{M_S^2}{s}\right), n = 2\\ \frac{2}{n-2}, n > 2 \end{cases}$$

Correspondence between the three formalisms:

$$M_S(\text{Hewett})|_{\lambda=+1} \equiv \sqrt[4]{\frac{2}{\pi}} \Lambda_T(\text{GRW})$$

$$\frac{\lambda}{M_S^4(\text{Hewett})} = \frac{\pi}{2} \frac{\mathcal{F}}{M_S^4(\text{HLZ})}$$

$$\frac{1}{\Lambda_T^4(\mathbf{GRW})} = \frac{\mathcal{F}}{M_S^4(\mathbf{HLZ})}$$

Rule of thumb:

$$M_S(\text{Hewett})\Big|_{\lambda=+1} \approx M_S(\text{HLZ})\Big|_{n=5}$$

 $\Lambda_T(\text{GRW}) = M_S(\text{HLZ})\Big|_{n=4}$

CDF Search for Virtual Graviton Effects

CDF Run II Preliminary (200 pb ⁻¹)											
	η_{95}		Hewett		HLZ					GRW	
	$(10^{-12} {\rm GeV}^{-4})$		(GeV)		(GeV)					(GeV)	
	$\lambda < 0$	$\lambda > 0$	$\lambda < 0$	$\lambda > 0$	n = 3	n = 4	n = 5	n = 6	n = 7		
Central-Central	1.05	1.18	987	959	1315	1105	999	929	879	1105)
Central-Plug	2.23	2.47	818	797	1089	916	827	770	728	916	
Combined	1.05	1.18	987	959	1315	1105	999	929	879	1105)

DØ Search for Virtual Graviton Effects

- Combine diphotons and dielectrons into "di-EM objects" to maximize efficiency
- High-mass, low |cosθ*| tail is a characteristic signature of LED [Cheung, GL, PRD 62 076003 (2000)]

SM Prediction | DØ Run II Preliminary

- Sensitivity is dominated by the diphoton channel $(2 \rightarrow 1 + 1)$
- ♣ Data agree well with the SM predictions; proceed with setting limits on large ED: alone or in combination with our Run I result [PRL 86, 1156 (2001)]:

Hewett		GRW	HLZ			(TeV, @95% CL)			
λ = +1	<i>λ</i> = −1	Ortiv	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	
1.22	1.10	1.36	1.56	1.61	1.36	1.23	1.14	1.08	
1.28	1.16	1.43	1.67	1.70	1.43	1.29	1.20	1.14	
		r _{max}	170 μm	1.5 nm	5.7 pm	0.2 pm	21 fm	4.2 fm	

- ♣ These are the most stringent constraints on large ED for n > 2 to date, among all the experiments
- For n=2, the sensitivity is very close to that of the tabletop gravity measurements (M_D = 1.7 TeV, r < 160 μm)

Interesting Candidate Events

■ While the DØ data are consistent with the SM, the two highest-mass candidates have anomalously low value of cosθ* typical of ED signal:

Event Callas: $M_{ee} = 475 \text{ GeV}$, $\cos \eta^* = 0.01$

 $M_{yy} = 436 \text{ GeV}, \cos \eta^* = 0.03$

TeV⁻¹ Extra Dimensions

- Intermediate-size extra dimensions with ~TeV-1 radius
- Introduced by Antoniadis [PL B246, 377 (1990)] in the string theory context; used by Dienes/Dudas/Gherghetta [PL B436, 55 (1998)] to allow for low-energy unification
 - ♣ Expect Z_{KK}, W_{KK}, g_{KK} resonances at the LHC energies
 - At lower energies, can study effects of virtual exchange of the Kaluza-Klein modes of vector bosons
- Current indirect constraints come from precision EW measurements:
 1/r ~ 6 TeV
- No dedicated experimental searches at colliders to date

First Dedicated Search for TeV⁻¹ Extra Dimensions

diEM Mass, GeV

- While the Tevatron sensitivity is inferior to the indirect limit, it's searching for effects of virtual KK modes, as they are complementary to those in the EW data
- DØ has performed the first dedicated search of this kind in the dielectron channel based on 200 pb⁻¹ of Run II data $(Z_{KK}, \gamma_{KK} \rightarrow e^+e^-)$
- The 2D-technique similar to the search for ADD effects in the virtual exchange yields the best sensitivity in the DY production [Cheung/GL, PRD **65**, 076003 (2002)]
- Data agree with the SM predictions, which resulted in the following limit on their size:
 - ♣ 1/r > 1.12 TeV @ 95% CL
 - $r < 1.75 \times 10^{-19} \text{ m}$

diEM Mass, GeV

1/r = 0.8 TeV

Randall-Sundrum Scenario

- Randall-Sundrum (RS) scenario [PRL **83**, 3370 (1999); PRL **83**, 4690 (1999)]
 - ♣ + brane no low energy effects
 - +- branes TeV Kaluza-Klein modes of graviton
 - Low energy effects are given by Λ_{π} ; for $kr_c \sim 10$, $\Lambda_{\pi} \sim 1$ TeV and the hierarchy problem is solved naturally
 - **4** Zero-mode coupling is suppressed as $1/M_{Pl}$; other modes are coupled as $1/Λ_T$

$$ds^{2} = e^{-2kr|\phi|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - r^{2} d\phi^{2}$$
$$\Lambda_{\pi} = \overline{M}_{Pl} e^{-kr\pi}$$

Reduced Planck mass:

$$\overline{M}_{Pl} \equiv M_{Pl} / \sqrt{8\pi}$$

Model Parameters

- Need only two parameters to define the model: k and r_c
- Equivalent set of parameters are:
 - ♣ The mass of the first KK mode, M₁
 - Dimensionless coupling k/M_{pl}

- To avoid fine-tuning and nonperturbative regime, coupling can't be too large or too small
- $0.01 \le k / \overline{M}_{Pl} \le 0.10$ is the expected range
- Gravitons are narrow

Davoudiasl, Hewett, Rizzo [PRD 63, 075004 (2001)]

CDF Search for RS Gravitons

- CDF pioneered these search in 2003
- **4** Based on e⁺e⁻, μ ⁺ μ ⁻ (200 pb⁻¹) and $\gamma\gamma$ (345 pb⁻¹, central photons only) modes
- **♣** N.B.: B(G \rightarrow gg) \approx 2B(G \rightarrow e⁺e⁻); diphotons also have higher acceptance
- Counting experiment in a resolution-driven sliding window in mass
- Data agree with expected SM background
- Interpret this as a search for narrow RS gravitons to set limits on the model parameters

CDF Limits on RS Model

- Sensitivity is driven by the diphoton channel
- Gravitons with masses up to 690 GeV have been excluded for the coupling of 0.10
- Further improvement can be achieved by combining three channels (to be done!)

The Highest Mass Diphoton Event

$$M_{\gamma\gamma} = 405 \text{ GeV}$$

Diphoton Mass = 405 GeV Photon Et = 172, 175 GeV

DØ Search for RS Gravitons

- ♣ DØ has just completed similar analysis and produced first results
- ♣ Analysis based on 200 pb⁻¹ of e⁺e⁻ data the same data set as used for searches for TeV⁻¹ ED
- Search window size has been optimized to yield maximum signal significance
- Analysis technique is similar; acceptance is somewhat higher

DØ Limits in the Dielectron Channel

Cross section scales as $(k/M_{Pl})^2$

Almost No Extra Dimensions

- Novel idea: build a multidimensional theory that is reduced to a fourdimensional theory at low energies [Arkani-Hamed, Cohen, Georgi, Phys. Lett. **B513**, 232 (1991)]
- An alternative EWSB mechanism, the so-called Little Higgs (a pseudo-goldstone boson, responsible for the EWSB) [Arkani-Hamed, Cohen, Katz, Nelson, JHEP 0207, 034 (2002)]
- Limited low-energy phenomenology: one or more additional vector bosons; a charge +2/3 vector-like quark (decaying into V/h+t), necessary to cancel quadratic divergencies), possible additional scalars (sometimes even stable!), all in a TeV range
- Unfortunately, the Tevatron reach is not very large; LHC would be the machine to probe this model
- However: started looking for this types models as a part of more generic search for Z'

CDF Limit On Z_H

- Littlest Higgs model: an additional gauge boson Z_H with the SU(2) coupling parameter cotθ
 [Han, Logan, McElrath, Wang, PRD 67, 095004 (2003)]
- \blacksquare Search done in the e^+e^- , $\mu^+\mu^-$ (200 pb⁻¹) mode; best sensitivity is in dielectrons
- Straight extension of the RS graviton/Z' analyses
- Limits are far from theoretically motivated masses, but a good start!

Masses up to 800 GeV are excluded for $\cot \theta = 1$

Conclusions

- Colliders offer ultimate probe of models with extra spatial dimensions
- Tevatron is the highest-energy machine today and has an excellent opportunity to find first signs of extra dimensions in space
- Accelerator performance is excellent and both CDF and DØ have a large number of new results in this area
- Sensitivities beyond existing limits have been achieved already:
 - ♣ Tightest limits on large ED to date
 - ♣ First limits on RS gravitons
 - ♣ First test of Little Higgs models
- Stay tuned for more exciting results to come with much larger data set – any day now could bring an exciting discovery!

